

    
      
          
            
  


Welcome to the edo documentation!

The edo library provides an evolutionary algorithm that optimises any
real-valued function over a subset of the space of all possible datasets that we
call Evolutionary Dataset Optimisation. The output of the algorithm is a bank
of effective datasets for which the provided function performs well that can
then be studied.

The applications of this method are varied but an important and relevant one is
in learning an algorithm’s strengths and weaknesses.

When determining the quality of an algorithm, the standard route is to run the
comparable algorithms on a finite set of existing (or newly simulated) datasets
and calculating some metric. The algorithm(s) with the smallest value of this
metric are chosen to be the best performing.

An issue with this approach is that it pays little regard to the reliability
and quality of the datasets being used, which begs the question: what makes
a dataset “good” for an algorithm? Or, why is it that an algorithm performs well
on some datasets but not others?

By passing the objective function of the algorithm to the edo.DataOptimiser
class, questions like these can be answered by studying the properties of the
resultant datasets. Beyond that, a combination of objective functions could be
used to determine how an algorithm performs against any number of other
algorithms. A comprehensive description of the evolutionary algorithm and an
examplar case study is available at https://doi.org/10.1007/s10489-019-01592-4.
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Tutorials

In these tutorials, we will make use of a few small examples to demonstrate how
edo is used and can be applied to various mathematical problems. Before
that, however, the library needs to be installed.



	Installation

	Optimising a simple function

	Simulating the unit circle

	Breaking down \(k\)-means









          

      

      

    

  

    
      
          
            
  


Installation

The edo library requires Python 3.6+ and is pip-installable:

$ python -m pip install edo





To install from source then clone the GitHub repo:

$ git clone https://github.com/daffidwilde/edo.git
$ cd edo
$ python setup.py install
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Optimising a simple function

Suppose we want to optimise the function \(f(x) = x^2\) across some part of the whole real line.

We can consider each \(x\) to be a dataset with exactly one row and one column like so:







	
	column 0





	row 0

	\(x\)






For the sake of this example, let us assume our initial population has 100 individuals in it, each of whom are uniformly distributed. Further, let us assume these uniform distributions randomly sample their bounds from between -1 and 1.


Formulation

To formulate this in edo we will need the library and the Uniform distribution class:


[1]:






import edo
from edo.distributions import Uniform







Our fitness function takes an individual and returns the square of its only element:


[2]:






def xsquared(individual):

    return individual.dataframe.iloc[0, 0] ** 2







We configure the Uniform class as needed and then create a Family instance for it:


[3]:






Uniform.param_limits["bounds"] = [-1, 1]
families = [edo.Family(Uniform)]








Note

The Family class is used to handle the various instances of the distribution classes used in a run of the evolutionary algorithm (EA).



With that, we’re ready to run the EA with the DataOptimiser class:


[4]:






opt = edo.DataOptimiser(
    fitness=xsquared,
    size=100,
    row_limits=[1, 1],
    col_limits=[1, 1],
    families=families,
    max_iter=5,
)

pop_history, fit_history = opt.run(random_state=0)







The edo.DataOptimiser.run method returns two things:


	pop_history: a nested list of all the edo.Individual instances organised by generation


	fit_history: a pandas.DataFrame containing the fitness scores of all the individuals




With these, we can see how close we got to the true minimum and what that individual looked like:


[5]:






idx = fit_history["fitness"].idxmin()
best_fitness = fit_history["fitness"].min()
generation, individual = fit_history[["generation", "individual"]].iloc[idx]

best_fitness, generation, individual








[5]:







(1.0230389458133027e-06, 0, 56)







[6]:






best = pop_history[generation][individual]
best








[6]:







Individual(dataframe=          0
0  0.001011, metadata=[Uniform(bounds=[-0.15, 0.83])])






So, we are definitely heading in the right the direction but we might want to take a closer look at the output of the EA.




Visualising the results

To get a better picture of what has come out of the EA, we can plot the fitness progression and some of the individuals.


[7]:






import matplotlib.pyplot as plt
import numpy as np








[8]:






_, ax = plt.subplots(dpi=300)

for gen, data in fit_history.groupby("generation"):
    ax.boxplot(data["fitness"], positions=[gen], widths=0.5, sym=".")

ax.set(xlabel="Epoch", ylabel="$\log (f(x)) = \log (x^2) $", yscale="log")








[8]:







[Text(0.5, 0, 'Epoch'), Text(0, 0.5, '$\\log (f(x)) = \\log (x^2) $'), None]











[image: ../_images/tutorial_xsquared_13_1.png]





[9]:






_, axes = plt.subplots(2, 3, dpi=300, sharex=True, sharey=True)

axes = np.reshape(axes, 6)

for i, (generation, ax) in enumerate(zip(pop_history, axes)):

    xs = np.linspace(-1, 1, 300)
    ax.plot(xs, xs ** 2, color="tab:gray", lw=1, zorder=-1)

    xs = np.array([ind.dataframe.iloc[0, 0] for ind in generation])
    ax.scatter(xs, xs ** 2, color="tab:orange", marker=".")

    xlabel = "$x$" if i > 2 else None
    ylabel = "$f(x)$" if i % 3 == 0 else None

    ax.set(title=f"Epoch {i}", xlabel=xlabel, ylabel=ylabel)

plt.tight_layout()












[image: ../_images/tutorial_xsquared_14_0.png]




This looks good! The EA appears to be converging somewhere near* the optimal value.



* NB: near could be considered a little loose but this sort of simple optimisation task is not really what edo is for.







Generated by nbsphinx [http://nbsphinx.readthedocs.io/] from a Jupyter [https://jupyter.org/] notebook. Formatted using Blackbook [https://github.com/Nikoleta-v3/blackbook].
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Simulating the unit circle

Consider the following scenario. Let \(X\) be a dataset with two columns denoted by \(X_r\) and \(X_a\) respectively, each containing \(n \in [50, 100]\) values. The values of \(X_a\) are drawn from the interval \([-2\pi, 2\pi]\) while those in \(X_r\) may take values from \([0, 2]\).

Our aim is to find a dataset \(X\) that maximises the following function:


\[f(X) = \frac{\text{Var}\left(X_{a}\right)}{\max_{x \in X_r} \left|x - 1\right|}\]

That is, a dataset which maximises the variance of one column and minimises the maximal distance from one of the other.

Such a dataset would describe the polar coordinates of some set of points along the unit circle where the points in \(X_r\) corresponds to the radii and those in \(X_a\) correspond to the angle from the origin in radians.


Formulation

For the sake of ease, we will assume that each column of \(X\) can be uniformly distributed between the prescribed bounds.

Then, to formulate this scenario in edo, we will have to create some copies of the Uniform class.


[1]:






import edo
import numpy as np
import pandas as pd
from edo.distributions import Uniform








[2]:






class RadiusUniform(Uniform):

    name = "RadiusUniform"
    param_limits = {"bounds": [0, 2]}


class AngleUniform(Uniform):

    name = "AngleUniform"
    param_limits = {"bounds": [-2 * np.pi, 2 * np.pi]}







To keep track of which column is which when calculating the fitness of an individual, we will use a function to extract that information from the metadata.


[3]:






def split_individual(individual):
    """ Separate the columns of an individual's dataframe. """

    df, metadata = individual
    names = [m.name for m in metadata]
    radii = df[names.index("RadiusUniform")]
    angles = df[names.index("AngleUniform")]

    return radii, angles


def fitness(individual):
    """ Determine the similarity of the dataset to the unit circle. """

    radii, angles = split_individual(individual)
    return angles.var() / (radii - 1).abs().max()







Given that this is a somewhat more complicated task than the previous tutorial, we will employ the following measures:


	A smaller proportion of the best individuals in a population will be used to create parents


	The algorithm will be run using several seeds to explore more of the search space and to have a higher degree of confidence in the output of edo





[4]:






pop_histories, fit_histories = [], []
for seed in range(5):

    families = [edo.Family(RadiusUniform), edo.Family(AngleUniform)]

    opt = edo.DataOptimiser(
        fitness,
        size=100,
        row_limits=[50, 100],
        col_limits=[(1, 1), (1, 1)],
        families=families,
        max_iter=30,
        best_prop=0.1,
        maximise=True,
    )

    pops, fits = opt.run(random_state=seed)

    fits["seed"] = seed
    pop_histories.append(pops)
    fit_histories.append(fits)

fit_history = pd.concat(fit_histories)










Visualising the results

As before, we can plot the fitness progression across these runs using matplotlib.


[5]:






import matplotlib.pyplot as plt








[6]:






_, ax = plt.subplots(dpi=300)

epochs = range(0, 31, 2)
fit = fit_history[fit_history["generation"].isin(epochs)]

xticklabels = []
for pos, (gen, data) in enumerate(fit.groupby("generation")):
    ax.boxplot(data["fitness"], positions=[pos], widths=0.5, sym=".")
    xticklabels.append(gen)

ax.set_xticklabels(xticklabels)
ax.set_xlabel("Epoch")
ax.set_ylabel("Fitness")








[6]:







Text(0, 0.5, 'Fitness')











[image: ../_images/tutorial_circle_9_1.png]




We can also take a look at the best individual across all runs.


[7]:






idx = fit_history["fitness"].idxmax()
seed, gen, ind = fit_history[["seed", "generation", "individual"]].iloc[idx]

best = pop_histories[seed][gen][ind]
seed, gen, ind, best








[7]:







(0,
 30,
 49,
 Individual(dataframe=           0         1
 0   1.005690 -4.928099
 1   0.971288  1.524298
 2   1.000057 -5.924903
 3   0.941059  2.931472
 4   0.984278  3.252393
 ..       ...       ...
 89  0.989021  4.615850
 90  1.022580  3.276894
 91  0.992919  3.266881
 92  1.027503 -4.978339
 93  1.004182  4.431548

 [94 rows x 2 columns], metadata=[Uniform(bounds=[0.93, 1.05]), Uniform(bounds=[-6.0, 4.74])]))







[8]:






_, ax = plt.subplots(dpi=300)

circle = plt.Circle((0, 0), 1, fill=False, linestyle="-", color="tab:gray")
ax.add_artist(circle)

radii, angles = split_individual(best)
xs, ys = radii * np.cos(angles), radii * np.sin(angles)

scatter = ax.scatter(xs, ys, marker=".")

ax.set(xlim=(-1.5, 1.5), ylim=(-1.5, 1.5), aspect="equal")








[8]:







[(-1.5, 1.5), (-1.5, 1.5), None]











[image: ../_images/tutorial_circle_12_1.png]




That’s a pretty good approximation to a circle. Nice.
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Breaking down \(k\)-means

In this tutorial we will be examining Lloyd’s algorithm for \(k\)-means clustering. Specifically, we will be looking at datasets restricted to the plane.

This tutorial has been adapted from the case study in the publication associated with this library [WKG20].


Formulation

In our case, we have a two-dimensional dataset with between 20 and 60 rows taken from the unit interval that must be split into three parts, i.e. we will be clustering each dataset using \(k\)-means with \(k=3\).

The fitness of an individual will be determined by the final inertia of the clustering. The inertia is the within-cluster sum-of-squares and has an optimal value of zero.

However, given that \(k\)-means is stochastic, we will use some smoothing to counteract this effect and get a more reliable fitness score.


[1]:






import edo
import numpy as np
from edo.distributions import Uniform
from sklearn.cluster import KMeans








[2]:






def fitness(individual, num_trials):

    inertias, labels = [], []
    for seed in range(num_trials):
        km = KMeans(n_clusters=3, random_state=seed).fit(individual.dataframe)
        inertias.append(km.inertia_)
        labels.append(km.labels_)

    individual.labels = labels[np.argmin(inertias)]
    return np.min(inertias)








[3]:






Uniform.param_limits["bounds"] = [0, 1]

opt = edo.DataOptimiser(
    fitness,
    size=50,
    row_limits=[10, 50],
    col_limits=[2, 2],
    families=[edo.Family(Uniform)],
    max_iter=5,
    best_prop=0.1,
)

pop_history, fit_history = opt.run(random_state=0, fitness_kwargs={"num_trials": 5})










Visualising the results

As always, we can plot the fitness progression to get an idea of how far the EA has taken us.


[4]:






import matplotlib.pyplot as plt








[5]:






_, ax = plt.subplots(dpi=300)

ax.set_yscale("log")

for epoch, data in fit_history.groupby("generation"):

    ax.boxplot(data["fitness"], positions=[epoch], widths=0.5)












[image: ../_images/tutorial_kmeans_6_0.png]




So, yes, we are moving toward that optimal value. However, an inertia of zero would be the trivial case where the three clusters are simply three unique points stacked on top of one another.

Knowing that we are in the right ballpark, it might be of use to study some individuals that were created.

Below are the individuals representing the best to worst fitnesses at regular intervals of 25 percentiles.


[6]:






_, axes = plt.subplots(1, 5, figsize=(11, 2), dpi=300)

for quantile, ax in zip((0.0, 0.25, 0.5, 0.75, 1.0), axes):

    idx = (
        (fit_history["fitness"] - fit_history["fitness"].quantile(quantile))
        .abs()
        .idxmin()
    )
    gen, ind = fit_history[["generation", "individual"]].iloc[idx]

    individual = pop_history[gen][ind]

    xs, ys = individual.dataframe[0], individual.dataframe[1]
    ax.scatter(xs, ys, c=individual.labels, s=10)

    lims = min(min(xs), min(ys)) - 0.1, max(max(xs), max(ys)) + 0.1

    ax.set(xlim=lims, ylim=lims, title=f"Quantile {quantile:.2f}")

plt.tight_layout(pad=0.5)












[image: ../_images/tutorial_kmeans_8_0.png]




We can see here that the less-fit individuals are more dispersed and utilise more of the search space, while fitter individuals are more compact.

Low dispersion within clusters is to be expected since inertia measures within-cluster coherence. However, low dispersion between clusters is not necessarily something we want. This could be a coincidence or it could indicate that the EDO algorithm has effectively trivialised the fitness function. That is, the inertia of a dataset in a smaller domain is lower than a comparable dataset in a larger domain. This is a limitation of our fitness function that can be mitigated by changing the
fitness function to, say, the silhouette coefficient [https://en.wikipedia.org/wiki/Silhouette_(clustering)], or by scaling the dataset before clustering.

Another interesting point is that the fittest individuals seem to have reduced the dimension of the search space to one dimension. Perhaps the simplest way of achieving this is to have two identical columns as has happened in the leftmost plot. By removing one dimension, the \(k\)-means algorithm is more easily able to find a centroidal Voronoi tessellation [https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation] which is its aim overall. To mitigate against this, the fitness
function could be adjusted to penalise datasets with high positive correlation.

These kind of adjustments and considerations are required to deeply study an algorithm or method with EDO.
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How-to…



	Set a seed
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Set a seed

Seeds are controlled by the random_state parameter in
edo.DataOptimiser.run() and can be integer or an instance of
numpy.random.RandomState.


Note

Without one, the EA here will just fall back on NumPy’s innate pseudo-random
number generator making any results inconsistent between runs.



Taking the example from the first tutorial, we can get different results by
using a different seed:

>>> import edo
>>> from edo.distributions import Uniform
>>>
>>> Uniform.param_limits["bounds"] = [-1, 1]
>>> families = [edo.Family(Uniform)]
>>>
>>> def xsquared(ind):
...     return ind.dataframe.iloc[0, 0] ** 2
>>>
>>> opt = edo.DataOptimiser(
...     fitness=xsquared,
...     size=100,
...     row_limits=[1, 1],
...     col_limits=[1, 1],
...     families=families,
...      max_iter=5,
... )
>>> _, fit_history = opt.run(random_state=0)
>>> fit_history.head()
    fitness  generation  individual
0  0.133711           0           0
1  0.058883           0           1
2  0.682047           0           2
3  0.315748           0           3
4  0.011564           0           4
>>>
>>> opt = edo.DataOptimiser(
...     fitness=xsquared,
...     size=100,
...     row_limits=[1, 1],
...     col_limits=[1, 1],
...     families=families,
...      max_iter=5,
... )
>>> _, fit_history = opt.run(random_state=1)
>>> fit_history.head()
    fitness  generation  individual
0  0.095955           0           0
1  0.154863           0           1
2  0.096262           0           2
3  0.081103           0           3
4  0.011293           0           4









          

      

      

    

  

    
      
          
            
  


Use a stopping condition

Stopping conditions allow a EA to terminate before the maximum number of
iterations (generations) have been completed. Using one can save a significant
amount of computational resources, and they can be based on any manner of
things, such as:


	The average fitness of a generation hasn’t improved in a number of
generations.


	The variation between individuals in the population is reasonably low.


	When a best-case solution has been found.




We can include a stopping condition by redefining the
edo.DataOptimiser.stop() method in a subclass to update the converged
parameter:

>>> import edo
>>> import numpy as np
>>>
>>> class MyOptimiser(edo.DataOptimiser):
...     def stop(self, tolerance):
...         """
...         Stop if the population fitness variance is less than
...         ``tolerance``.
...         """
...         fitness_variance = np.var(self.pop_fitness)
...         self.converged = fitness_variance < tolerance





To see this in action, consider the example from the first tutorial:

>>> from edo.distributions import Uniform
>>>
>>> Uniform.param_limits["bounds"] = [-1, 1]
>>> families = [edo.Family(Uniform)]
>>>
>>> def xsquared(ind):
...     return ind.dataframe.iloc[0, 0] ** 2
>>>
>>> opt = MyOptimiser(xsquared, 100, [1, 1], [1, 1], families, max_iter=5)





Now we can run the algorithm as normal, and with an appropriate value of
tolerance, it will stop before the maximum number of iterations:

>>> _ = opt.run(random_state=0, stop_kwargs={"tolerance": 1e-6})
>>> opt.generation
4









          

      

      

    

  

    
      
          
            
  


Customise the selection process

You can alter the selection discipline of the EA using two parameters in
edo.DataOptimiser: best_prop and lucky_prop. These control
how many of the best individuals and any lucky (random) individuals should be
selected respectively.

For example, say we wanted to see the effect of selecting parents purely at
random in each generation. Then we would set best_prop to be zero, and
lucky_prop to be some value between 0 and 1:

>>> import edo
>>> from edo.distributions import Uniform
>>>
>>> def xsquared(ind):
...     return ind.dataframe.iloc[0, 0] ** 2
>>>
>>> opt = edo.DataOptimiser(
...     xsquared,
...     100,
...     [1, 1],
...     [1, 1],
...     [edo.Family(Uniform)],
...     best_prop=0,
...     lucky_prop=0.25,
... )









          

      

      

    

  

    
      
          
            
  


Customise the mutation process

The mutation process can be altered in three ways:


	Setting the initial mutation probability


	Adjusting (dwindling) the mutation probability over time


	Compacting the mutation space around the best individuals




Below are some quick examples of how to do these things.


Setting the initial probability

This is done using the mutation_prob parameter in
edo.DataOptimiser. For instance, we can remove all mutation by setting
this parameter to be zero:

>>> import edo
>>> from edo.distributions import Uniform
>>>
>>> def xsquared(ind):
...     return ind.dataframe.iloc[0, 0] ** 2
>>>
>>> opt = edo.DataOptimiser(
...     xsquared, 100, [1, 1], [1, 1], [edo.Family(Uniform)], mutation_prob=0
... )








Dwindling mutation probability

Sometimes an evolutionary algorithm can be thrown off once it has started
converging. The purpose of the mutation process is to do this deliberately.
However, as the EA progresses, mutation can make this disruption unhelpful and
the population may become unpredictable or noisy.

To combat this, the edo.DataOptimiser.dwindle() method can be redefined in
a subclass:

>>> class MyOptimiser(edo.DataOptimiser):
...     def dwindle(self, N=50):
...         """ Cut the mutation probability every ``N`` generations. """
...         if self.generation % N == 0:
...             self.mutation_prob /= 2





Any further arguments for this method should be passed in the dwindle
parameter of edo.DataOptimiser.run():

>>> opt = MyOptimiser(
...     xsquared,
...     100,
...     [1, 1],
...     [1, 1],
...     [edo.Family(Uniform)],
...     max_iter=1,
...     mutation_prob=1,
... )
>>>
>>> pop_history, fit_history = opt.run(dwindle_kwargs={"N": 1})
>>> opt.mutation_prob
0.5








Compacting the mutation space

The final way to alter the mutation process is to progressively reduce the
mutation space via shrinking. This is done using the
shrinkage parameter of edo.DataOptimiser:

>>> opt = edo.DataOptimiser(
...     xsquared, 100, [1, 1], [1, 1], [edo.Family(Uniform)], shrinkage=0.9
... )











          

      

      

    

  

    
      
          
            
  


Access information about an individual

Individuals are defined by three things in edo: a dataset, metadata about
the distributions used to form the columns of that dataset, and a pseudo-random
number generator for sampling from those distributions.

You can access each of these objects in the same way you would with attributes.
To demonstrate, let’s create an individual:

>>> import numpy as np
>>> from edo import Family
>>> from edo.individual import create_individual
>>> from edo.distributions import Normal, Poisson
>>>
>>> state = np.random.RandomState(0)
>>>
>>> individual = create_individual(
...     row_limits=[3, 3],
...     col_limits=[4, 4],
...     families=[Family(Normal), Family(Poisson)],
...     weights=None,
...     random_state=state,
... )





Then the dataframe can be accessed like this:

>>> individual.dataframe
           0   1  2          3
0   2.455133   8  2  13.795999
1   2.473556  13  0  -2.606494
2 -10.151318  10  2  -3.112364





And the metadata like this:

>>> individual.metadata
[Normal(mean=1.86, std=8.44), Poisson(lam=8.92), Poisson(lam=0.99), Normal(mean=-1.23, std=9.88)]









          

      

      

    

  

    
      
          
            
  


Customise column distributions

All distributions in edo have settings that can be customised. You can see
all of the currently implemented distributions, and their default settings, on
the edo.distributions reference page. For now, let’s consider the
normal distribution:

>>> from edo.distributions import Normal





The default bounds are -10 and 10 for the mean, and 0 and 10 for the standard
deviation:

>>> Normal.param_limits
{'mean': [-10, 10], 'std': [0, 10]}





Changing these bounds is as simple as redefining the class attributes:

>>> Normal.param_limits['mean'] = [-5, 5]
>>> Normal.param_limits['std'] = [0, 1]
>>> Normal.param_limits
{'mean': [-5, 5], 'std': [0, 1]}





Now all instances of normally distributed columns will have a mean between -5
and 5, and a standard deviation between 0 and 1.

In addition to this, hard bounds on the parameters can be set:

>>> Normal.hard_limits['mean'] = [-100, 100]





These hard limits are meant to stop the parameter limits from shrinking too far.





          

      

      

    

  

    
      
          
            
  


Implement a new column distribution

You are not limited to use only the distributions that are currently
implemented in edo.

Say, for example, you wanted to implement a triangular distribution class. The
first step would be to import the edo.distributions.Distribution base
class:

>>> from edo.distributions import Distribution





Now, you define your class as normal, inheriting from the base class. The
requirements on your class are as follows:


	There must be a class attribute name giving the name of the
distribution.


	There must be a class attribute dtype detailing the preferred data type of
the distribution.


	There must be a class attribute hard_limits that gives extreme limits
on the parameters of the distribution.


	There must be a class attribute param_limits that gives the original
limits on the parameters of the distribution.


	It must have a sample method that takes as argument: itself, an integer
number of rows nrows and an instance of numpy.random.RandomState.


	The __init__ takes only an instance of numpy.random.RandomState.


	The only attributes defined in the __init__ are the parameters of that
particular instance of the distribution and match the keys of
param_limits.




So, bearing that in mind, a triangular distribution class would look something
like this:

>>> class Triangular(Distribution):
...     """ A continuous column distribution given by the triangular
...     distribution. """
...
...     name = "Triangular"
...     dtype = float
...     hard_limits = {"bounds": [-10, 10]}
...     param_limits = {"bounds": [-10, 10]}
...
...     def __init__(self, random_state):
...
...         left, mode, right = sorted(
...             random_state.uniform(*self.param_limits["bounds"], size=3)
...         )
...         self.bounds = [left, mode, right]
...
...     def sample(self, nrows, random_state):
...         """ Take a sample of size ``nrows`` from the triangular
...         distribution with the given bounds. """
...
...         return random_state.triangular(*self.bounds, size=nrows)
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What is an evolutionary algorithm?

Evolutionary algorithms (EAs) form a branch of population-based optimisation
meta-heuristics inspired by the structures and mechanisms of evolutionary
biology, and are widely recognised to be formally introduced in the 1970s by the
multi-disciplined scientist John Holland in [Hol75]. The term “genetic
algorithm” is typically reserved for members of a rather specific subset these
search space optimisation methods that use a “chromosome” representation for the
individuals in its populations.

At times, this distinction is overlooked as the defining features of this family
of algorithms are their operators. More detailed summaries of them are given in
this section of the documentation but briefly they are:


	Selection: The process by which individuals are plucked from a population
to be carried forward into the next generation after being blended together to
form offspring with (hopefully) favourable qualities.


	Crossover: The blending process. Here, pairs of individuals are combined
to form one or more new individuals to be added into the next generation.


	Mutation: Once a new individual has been made and before they are
introduced into the population, there is a chance that they can be altered.




The general structure of a basic EA is given below:

[image: A schematic of a generic EA.]





          

      

      

    

  

    
      
          
            
  


Individuals and the population


Representation

At the beginning of a EA, a collection of individuals are generated. This
collection is called a population or generation. Typically, these
individuals are created by randomly sampling parameters from a search space –
though other methods exist [https://en.wikipedia.org/wiki/Latin_hypercube_sampling]. Each individual
represents a solution to the problem at hand; in the case of genetic algorithms,
this representation is a bit string or chromosome as it imitates an actual
genetic chromosome.

The EDO method deals with the creation and adjustment of entire datasets. As
such, there is no encoding to that aspect of an individual. In addition to this
dataset, individuals are represented by a list of probability distributions.
Each of these distributions acts a set of instructions on how to create, inherit
from and mutate the values of the corresponding column in the dataset. These
objects are stored as class attributes in the edo.individual.Individual
class.




Creation

The parameter space from which individual datasets are generated is defined by
the row_limits, col_limits and families parameters in
edo.DataOptimiser. The first two describe the dimensional limits of the
dataset (i.e. how tall or wide it can be) while the latter is a pool of families
of probability distributions with which to fill in the dataset.


Note

You can consider a family as a sort of factory that manages and distributes
independent copies of a particular probability distribution.



The step of creating an individual is to sample a number of rows and columns,
creating a “skeleton” to be filled. Then, according to any family-specific
limits defined in col_limits, each column is filled with values by:


	Sampling a family from the pool.


	Creating a new (or using an existing) copy of that family’s distribution.


	Creating an instance of that distribution and sampling values from it to fill
the column.




A diagram depicting this process is given below:

[image: A schematic for the creation of an individual]
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Selection

The selection operator defines the process by which individuals are chosen from
the current population to act as the “parents” of the next generation. Almost
always, selection operators determine whether an individual should become a
parent based on their fitness.

In EDO, a proportion of the best performing individuals are taken from a
population into the next. You can also choose to include some randomly
selected, or “lucky”, individuals to be carried forward with the fittest members
of the population, if there are any still available.

This selection method is a variant of the classic truncation selection method
with a fixed selection proportion. When lucky individuals are included, a level
of noise is introduced which can increase convergence rates [Jeb13].


Note

Taking lucky individuals should be done with caution as the associated noise
can also throw the algorithm off. The use of this functionality is only
encouraged for particularly complex contexts where you are unable to obtain
satisfactory results otherwise.







          

      

      

    

  

    
      
          
            
  


Crossover

A crossover operator defines how two individuals should be combined to create a
new individual (or individuals). Importantly, the crossover operator allows for
the preservation of preferable characteristics found by the genetic algorithm.

In EDO, the crossover operator returns exactly one individual from a pair of
parents. As is discussed elsewhere_, an individual is created by sampling its
dimensions and then its values. Creating an offspring is done in the same way
except it inherits these characteristics from its parents:


	Inherit a number of rows and a number of columns from either parent,
independently and uniformly. This is the skeleton of the dataset.


	Pool together the columns (and respective column distributions) from both
parents.


	Sample from this pool uniformly (and without replacement) to fill in
the columns of the offspring’s dataset. Now the dataset has values and
instructions on how to manipulate it.


	Remove surplus rows as required, and fill in any missing values using the
corresponding column information. This is now a complete individual.




Before this offspring is added to population, it must undergo mutation.


Example

Consider the following example where two individuals are created:

>>> import numpy as np
>>> from edo import Family
>>> from edo.distributions import Poisson
>>> from edo.individual import create_individual
>>> from edo.operators import crossover
>>>
>>> row_limits, col_limits = [1, 3], [2, 3]
>>> families = [Family(Poisson)]
>>> states = [np.random.RandomState(i) for i in range(2)]
>>>
>>> parents = [
...     create_individual(
...         row_limits, col_limits, families, weights=None, random_state=state
...     ) for state in states
... ]





These individuals’ dataframes look like this:

>>> parents[0].dataframe
    0  1   2
0  12  0  12
>>> parents[1].dataframe
   0  1  2
0  0  5  7
1  4  4  9





And their metadata like this:

>>> parents[0].metadata
[Poisson(lam=7.15), Poisson(lam=0.87), Poisson(lam=8.33)]
>>> parents[1].metadata
[Poisson(lam=7.2), Poisson(lam=3.97), Poisson(lam=8.01)]





Now, we create a PRNG for the offspring and apply the crossover:

>>> state = np.random.RandomState(2)
>>> offspring = crossover(*parents, col_limits, families, state)
>>>
>>> offspring.dataframe
   0   1  2
0  0  12  7
>>> offspring.metadata
[Poisson(lam=7.2), Poisson(lam=8.33), Poisson(lam=8.01)]











          

      

      

    

  

    
      
          
            
  


Mutation

To maintain a level of variety in a population and to force the evolutionary
algorithm to explore more of the search space, new individuals are mutated
immediately after their creation during the crossover process.

The mutation process in EDO is not quite as simple as in a traditional genetic
algorithm. This is due to the representation of individuals. An individual is
mutated in the following way:


	Mutate the number of rows and columns by adding and/or removing a line
from each axis with the same probability. Lines are removed at random. Rows
are added by sampling a new value from each current column distribution and
adding them to the bottom of the dataset. Columns are added in the same way
as in the creation process. Note that the number of rows
and columns will not mutate beyond the bounds passed in col_limits.


	With the dimensions of the dataset mutated, each value in the dataset is
mutated using the same mutation probability. A value is mutated by replacing
it with a single value sampled from the distribution associated with its
column.





Example

Consider the following mutation of an individual:

>>> import numpy as np
>>> from edo import Family
>>> from edo.distributions import Poisson
>>> from edo.individual import create_individual
>>> from edo.operators import mutation
>>>
>>> row_limits, col_limits = [3, 5], [2, 5]
>>> families = [Family(Poisson)]
>>> state = np.random.RandomState(0)
>>>
>>> individual = create_individual(
...     row_limits, col_limits, families, weights=None, random_state=state
... )





The individual looks like this:

>>> individual.dataframe
    0  1  2  3  4
0  12  8  4  1  7
1   6  6  5  1  5
2   8  7  7  1  3
>>> individual.metadata
[Poisson(lam=7.15), Poisson(lam=7.74), Poisson(lam=6.53), Poisson(lam=2.83), Poisson(lam=6.92)]





Now we can mutate this individual after setting the mutation probability. This
is deliberately large to make for a substantial mutation:

>>> mutation_prob = 0.7
>>> mutant = mutation(individual, mutation_prob, row_limits, col_limits, families)





This gives the following individual:

>>> mutant.dataframe
    0  1  2  3
0   8  4  1  5
1  11  3  4  5
2   9  7  3  3
>>> mutant.metadata
[Poisson(lam=7.74), Poisson(lam=6.53), Poisson(lam=2.83), Poisson(lam=6.92)]











          

      

      

    

  

    
      
          
            
  


Shrinkage

It is possible to reduce the search space of the algorithm forcibly by including
some shrinkage or compacting. Under this operation, each distribution family
has its parameter limits reduced by those present in the parents from a
generation according to a power law presented in [AS17].


Warning

This can produce reductive results and is not recommended in normal use.







          

      

      

    

  

    
      
          
            
  


Setting seeds

Evolutionary algorithms are meta-heuristics and so are stochastic in nature.
Therefore, it is a good idea to set a seed for the pseudo-random number
generator when running the algorithm. By doing this, the same run can be
executed again and again, and you will always obtain the same results.

A short example of how to do this is given here.





          

      

      

    

  

    
      
          
            
  


Smoothing

Sometimes the fitness function you wish to use will have a stochastic element.
This means that when the fitness of an individual is calculated, it will not
necessarily be the same on another run of the algorithm, or representative at
all. However, this effect can be handled by use of a technique called smoothing.
An example of this is used in the k-means tutorial.

There are many different ways of implementing smoothing within a fitness
function; in the tutorial several repetitions are done using their own random
seeds. These repetitions are then amalgamated to give a representative value for
the objective function. Depending on the problem domain you are investigating,
more robust or specific methods may be available to you such as
recursive Bayesian estimation [https://en.wikipedia.org/wiki/Recursive_Bayesian_estimation].





          

      

      

    

  

    
      
          
            
  


Reference


Contents


	edo
	edo package





	Bibliography

	Citation instructions
	Citing the library

	Citing the paper





	Contributing to the library









          

      

      

    

  

    
      
          
            
  


edo



	edo package
	Subpackages
	edo.distributions package
	Submodules

	edo.distributions.base module

	edo.distributions.continuous module

	edo.distributions.discrete module

	Module contents





	edo.operators package
	Submodules

	edo.operators.crossover module

	edo.operators.mutation module

	edo.operators.selection module

	edo.operators.shrink module

	edo.operators.util module

	Module contents









	Submodules

	edo.family module

	edo.fitness module

	edo.individual module

	edo.optimiser module

	edo.population module

	edo.version module

	Module contents













          

      

      

    

  

    
      
          
            
  


edo package


Subpackages



	edo.distributions package
	Submodules

	edo.distributions.base module

	edo.distributions.continuous module

	edo.distributions.discrete module

	Module contents





	edo.operators package
	Submodules

	edo.operators.crossover module

	edo.operators.mutation module

	edo.operators.selection module

	edo.operators.shrink module

	edo.operators.util module

	Module contents












Submodules




edo.family module

The distribution subtype handler.


	
class edo.family.Family(distribution, max_subtypes=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for handling all concurrent subtypes of a distribution class. A
subtype is an independent copy of the distribution class allowing more of
the search space to be explored.


	Parameters

	
	distributionedo.distributions.Distribution

	The distribution class to keep track of. Must be of the same form as
those in edo.distributions.



	max_subtypesint

	The maximum number of subtypes in the family that are currently being
used in a run of the EA. There is no limit by default.







	Attributes

	
	namestr

	The name of the family’s distribution followed by Family.



	subtype_idint

	A counter that increments when new subtypes are created. Used as an
identifier for a given subtype.



	subtypesdict

	A dictionary that maps subtype identifiers to their corresponding
subtype. This gets updated during a run to those that are currently
being used in the population.



	all_subtypesdict

	A dictionary of all subtypes that have been created in the family.



	random_statenp.random.RandomState

	The PRNG associated with this family to be used for the sampling and
creation of subtypes.










	
add_subtype(subtype_name=None, attributes=None)

	Create a copy of the distribution class that is identical and
independent of the original.






	
classmethod load(distribution, root='.edocache')

	Load in any existing cached subtype dictionaries for
distribution and restore the subtype along with the family’s random
state.






	
make_instance(random_state)

	Select an existing subtype at random – or create a new one if there
is space available – and return an instance of that subtype.






	
reset(root=None)

	Reset the family to have no subtypes and the default numpy PRNG.
If root is passed then any cached information about the family is
deleted.






	
save(root='.edocache')

	Save the current subtypes in the family and the family’s random
state in the root directory.












edo.fitness module

Functions for calculating individual and population fitness.


	
edo.fitness.get_population_fitness(population, fitness, processes=None, **kwargs)

	Return the fitness of each individual in the population. This can be
done in parallel by specifying a number of cores to use for independent
processes.






	
edo.fitness.write_fitness(fitness, generation, root)

	Write the generation fitness to file in the root directory.








edo.individual module

A collection of objects to facilitate an individual representation.


	
class edo.individual.Individual(dataframe, metadata, random_state=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class to represent an individual in the EA.


	Parameters

	
	dataframepd.DataFrame or dd.DataFrame

	The dataframe of the individual.



	metadatalist

	A list of distributions that are associated with the respective column
of dataframe.



	random_statenp.random.RandomState, optional

	The PRNG for the individual. If not provided, the default PRNG is used.







	Attributes

	
	fitnessfloat

	The fitness of the individual. Initialises as None.










	
classmethod from_file(path, distributions, family_root='.edocache', method='pandas')

	Create an instance of Individual from the files at path and
family_root using either pandas or dask to read in
individuals. Always fall back on pandas.






	
to_file(path, family_root='.edocache')

	Write self to file.










	
edo.individual.create_individual(row_limits, col_limits, families, weights, random_state)

	Create an individual within the limits provided.


	Parameters

	
	row_limitslist

	Lower and upper bounds on the number of rows a dataset can have.



	col_limitslist

	Lower and upper bounds on the number of columns a dataset can have.
Tuples can be used to indicate limits on the number of columns needed
from each family in families.



	familieslist

	A list of edo.Family instances handling the column distributions
that can be selected from.



	weightslist

	A sequence of relative weights with which to sample from families.
If None, then sampling is uniform.



	random_statenumpy.random.RandomState

	The PRNG associated with the individual to use for its random sampling.
















edo.optimiser module

The evolutionary dataset optimisation algorithm class.


	
class edo.optimiser.DataOptimiser(fitness, size, row_limits, col_limits, families, weights=None, max_iter=100, best_prop=0.25, lucky_prop=0, crossover_prob=0.5, mutation_prob=0.01, shrinkage=None, maximise=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The (evolutionary) dataset optimiser. A class that generates data for a
given fitness function and evolutionary parameters.


	Parameters

	
	fitnessfunc

	Any real-valued function that at least takes an instance of
Individual as argument. Any further arguments should be passed in
the kwargs parameter of the run method.



	sizeint

	The size of the population to create.



	row_limitslist

	Lower and upper bounds on the number of rows a dataset can have.



	col_limitslist

	Lower and upper bounds on the number of columns a dataset can have.

Tuples can also be used to specify the min/maximum number of columns
there can be of each element in families.



	familieslist

	A list of edo.Family instances that handle the distribution classes
used to populate the individuals in the EA.



	weightslist

	A set of relative weights on how to select elements from families.
If None, they will be chosen uniformly.



	max_iterint

	The maximum number of iterations to be carried out before terminating.



	best_propfloat

	The proportion of a population from which to select the “best”
individuals to be parents.



	lucky_propfloat

	The proportion of a population from which to sample some “lucky”
individuals to be parents. Defaults to 0.



	crossover_probfloat

	The probability with which to sample dimensions from the first parent
over the second in a crossover operation. Defaults to 0.5.



	mutation_probfloat

	The probability of a particular characteristic of an individual being
mutated. If using a dwindle method, this is an initial probability.



	shrinkagefloat

	The relative size to shrink each parameter’s limits by for each
distribution in families. Defaults to None but must be between
0 and 1 (exclusive).



	maximisebool

	Determines whether fitness is a function to be maximised or not.
Fitness scores are minimised by default.










	
dwindle(**kwargs)

	A placeholder for a function which can adjust (typically, reduce)
the mutation probability over the run of the EA.






	
run(root=None, random_state=None, processes=None, fitness_kwargs=None, stop_kwargs=None, dwindle_kwargs=None)

	Run the evolutionary algorithm under the given constraints.


	Parameters

	
	rootstr, optional

	The directory in which to write all generations to file. If
None, nothing is written to file. Instead, every generation is
kept in memory and is returned at the end. If writing to file, one
generation is held in memory at a time and everything is returned
upon termination as a tuple containing dask objects.



	random_stateint or np.ran.RandomState, optional

	The random seed or state for a particular run of the algorithm. If
None, the default PRNG is used.



	processesint, optional

	The number of parallel processes to use when calculating the
population fitness. If None then a single-thread scheduler is
used.



	fitness_kwargsdict, optional

	Any additional parameters for the fitness function should be placed
here.



	stop_kwargsdict, optional

	Any additional parameters for the stop method should be placed
here.



	dwindle_kwargsdict, optional

	Any additional parameters for the dwindle method should be
placed here.







	Returns

	
	pop_historylist

	Every individual in each generation as a nested list of
Individual instances.



	fit_historypd.DataFrame or dask.dataframe.DataFrame

	Every individual’s fitness in each generation.














	
stop(**kwargs)

	A placeholder for a function which acts as a stopping condition on
the EA.












edo.population module

Functions for the creation and updating of a population.


	
edo.population.create_initial_population(row_limits, col_limits, families, weights, random_states)

	Create an initial population for the genetic algorithm based on the
given parameters.


	Parameters

	
	sizeint

	The number of individuals in the population.



	row_limitslist

	Limits on the number of rows a dataset can have.



	col_limitslist

	Limits on the number of columns a dataset can have.



	familieslist

	A list of edo.Family instances that handle the column distribution
classes.



	weightslist

	Relative weights with which to sample from families. If None,
sampling is done uniformly.



	random_statesdict

	A mapping of the index of the population to a
numpy.random.RandomState instance that is to be assigned to the
individual at that index in the population.







	Returns

	
	populationlist

	A population of newly created individuals.














	
edo.population.create_new_population(parents, population, crossover_prob, mutation_prob, row_limits, col_limits, families, weights, random_states)

	Given a set of potential parents to be carried into the next generation,
create offspring from pairs within that set until there are enough
individuals.


	Parameters

	
	parentslist

	A list of edo.individual.Individual instances used to create new
offspring.



	populationlist

	The current population.



	crossover_probfloat

	The probability with which to sample dimensions from the first parent
over the second during crossover.



	mutation_probfloat

	The probability with which to mutate a component of a newly created
individual.



	row_limitslist

	Limits on the number of rows a dataset can have.



	col_limitslist

	Limits on the number of columns a dataset can have.



	familieslist

	The edo.Family instances from which to draw distribution instances.



	weightslist

	Weights used to sample elements from families.



	random_statesdict

	The PRNGs assigned to each individual in the population.
















edo.version module

The current version of the library.




Module contents

Top-level imports for the library.


	
class edo.DataOptimiser(fitness, size, row_limits, col_limits, families, weights=None, max_iter=100, best_prop=0.25, lucky_prop=0, crossover_prob=0.5, mutation_prob=0.01, shrinkage=None, maximise=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The (evolutionary) dataset optimiser. A class that generates data for a
given fitness function and evolutionary parameters.


	Parameters

	
	fitnessfunc

	Any real-valued function that at least takes an instance of
Individual as argument. Any further arguments should be passed in
the kwargs parameter of the run method.



	sizeint

	The size of the population to create.



	row_limitslist

	Lower and upper bounds on the number of rows a dataset can have.



	col_limitslist

	Lower and upper bounds on the number of columns a dataset can have.

Tuples can also be used to specify the min/maximum number of columns
there can be of each element in families.



	familieslist

	A list of edo.Family instances that handle the distribution classes
used to populate the individuals in the EA.



	weightslist

	A set of relative weights on how to select elements from families.
If None, they will be chosen uniformly.



	max_iterint

	The maximum number of iterations to be carried out before terminating.



	best_propfloat

	The proportion of a population from which to select the “best”
individuals to be parents.



	lucky_propfloat

	The proportion of a population from which to sample some “lucky”
individuals to be parents. Defaults to 0.



	crossover_probfloat

	The probability with which to sample dimensions from the first parent
over the second in a crossover operation. Defaults to 0.5.



	mutation_probfloat

	The probability of a particular characteristic of an individual being
mutated. If using a dwindle method, this is an initial probability.



	shrinkagefloat

	The relative size to shrink each parameter’s limits by for each
distribution in families. Defaults to None but must be between
0 and 1 (exclusive).



	maximisebool

	Determines whether fitness is a function to be maximised or not.
Fitness scores are minimised by default.










	
dwindle(**kwargs)

	A placeholder for a function which can adjust (typically, reduce)
the mutation probability over the run of the EA.






	
run(root=None, random_state=None, processes=None, fitness_kwargs=None, stop_kwargs=None, dwindle_kwargs=None)

	Run the evolutionary algorithm under the given constraints.


	Parameters

	
	rootstr, optional

	The directory in which to write all generations to file. If
None, nothing is written to file. Instead, every generation is
kept in memory and is returned at the end. If writing to file, one
generation is held in memory at a time and everything is returned
upon termination as a tuple containing dask objects.



	random_stateint or np.ran.RandomState, optional

	The random seed or state for a particular run of the algorithm. If
None, the default PRNG is used.



	processesint, optional

	The number of parallel processes to use when calculating the
population fitness. If None then a single-thread scheduler is
used.



	fitness_kwargsdict, optional

	Any additional parameters for the fitness function should be placed
here.



	stop_kwargsdict, optional

	Any additional parameters for the stop method should be placed
here.



	dwindle_kwargsdict, optional

	Any additional parameters for the dwindle method should be
placed here.







	Returns

	
	pop_historylist

	Every individual in each generation as a nested list of
Individual instances.



	fit_historypd.DataFrame or dask.dataframe.DataFrame

	Every individual’s fitness in each generation.














	
stop(**kwargs)

	A placeholder for a function which acts as a stopping condition on
the EA.










	
class edo.Family(distribution, max_subtypes=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for handling all concurrent subtypes of a distribution class. A
subtype is an independent copy of the distribution class allowing more of
the search space to be explored.


	Parameters

	
	distributionedo.distributions.Distribution

	The distribution class to keep track of. Must be of the same form as
those in edo.distributions.



	max_subtypesint

	The maximum number of subtypes in the family that are currently being
used in a run of the EA. There is no limit by default.







	Attributes

	
	namestr

	The name of the family’s distribution followed by Family.



	subtype_idint

	A counter that increments when new subtypes are created. Used as an
identifier for a given subtype.



	subtypesdict

	A dictionary that maps subtype identifiers to their corresponding
subtype. This gets updated during a run to those that are currently
being used in the population.



	all_subtypesdict

	A dictionary of all subtypes that have been created in the family.



	random_statenp.random.RandomState

	The PRNG associated with this family to be used for the sampling and
creation of subtypes.










	
add_subtype(subtype_name=None, attributes=None)

	Create a copy of the distribution class that is identical and
independent of the original.






	
classmethod load(distribution, root='.edocache')

	Load in any existing cached subtype dictionaries for
distribution and restore the subtype along with the family’s random
state.






	
make_instance(random_state)

	Select an existing subtype at random – or create a new one if there
is space available – and return an instance of that subtype.






	
reset(root=None)

	Reset the family to have no subtypes and the default numpy PRNG.
If root is passed then any cached information about the family is
deleted.






	
save(root='.edocache')

	Save the current subtypes in the family and the family’s random
state in the root directory.















          

      

      

    

  

    
      
          
            
  


edo.distributions package


Submodules




edo.distributions.base module

The base class from which all distributions inherit.


	
class edo.distributions.base.Distribution

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An abstract base class for all currently implemented distributions and
those defined by users.


	
sample(nrows=None, random_state=None)

	A placeholder function for sampling from the distribution.












edo.distributions.continuous module

All currently implemented continuous distributions.


	
class edo.distributions.continuous.Gamma(random_state)

	Bases: edo.distributions.base.Distribution

The gamma distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Gamma".



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[0, 10] for both alpha and theta.



	alphafloat

	The shape parameter sampled from param_limits["alpha"].
Instance attribute.



	thetafloat

	The scale parameter sampled from param_limits["theta"].
Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'alpha': [0, 10], 'theta': [0, 10]}

	




	
name = 'Gamma'

	




	
param_limits = {'alpha': [0, 10], 'theta': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the gamma distribution using
the provided np.random.RandomState instance.










	
class edo.distributions.continuous.Normal(random_state)

	Bases: edo.distributions.base.Distribution

The normal distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Normal".



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[-10, 10] for mean and [0, 10] for std.



	meanfloat”

	The mean, sampled from param_limits["mean"]. Instance attribute.



	stdfloat

	The standard deviation, sampled from param_limits["std"].
Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'mean': [-10, 10], 'std': [0, 10]}

	




	
name = 'Normal'

	




	
param_limits = {'mean': [-10, 10], 'std': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the normal distribution using
the provided np.random.RandomState instance.










	
class edo.distributions.continuous.Uniform(random_state)

	Bases: edo.distributions.base.Distribution

The uniform distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, Uniform.



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[-10, 10] for bounds.



	boundslist of float

	The lower and upper bounds of the distribution. Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'bounds': [-10, 10]}

	




	
name = 'Uniform'

	




	
param_limits = {'bounds': [-10, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the uniform distribution using
the provided np.random.RandomState instance.












edo.distributions.discrete module

All currently implemented discrete distribution classes.


	
class edo.distributions.discrete.Bernoulli(random_state)

	Bases: edo.distributions.base.Distribution

The Bernoulli distribution class, i.e. a binomial distribution with
exactly one trial.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Bernoulli".



	dtypeint

	int([x]) -> integer



	param_limitsdict

	A dictionary of the limits on the distribution parameter. Defaults to
[0, 1] for prob.



	probfloat

	The success probability, sampled from param_limits["prob"].
Instance attribute.










	
dtype

	alias of builtins.int






	
hard_limits = {'prob': [0, 1]}

	




	
name = 'Bernoulli'

	




	
param_limits = {'prob': [0, 1]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the Bernoulli distribution
using the provided np.random.RandomState instance.










	
class edo.distributions.discrete.Poisson(random_state)

	Bases: edo.distributions.base.Distribution

The Poisson distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of distribution, "Poisson".



	dtypeint

	int([x]) -> integer



	param_limitsdict

	A dictionary of the limits of the distribution parameter. Defaults to
[0, 10] for lam.



	lamfloat

	The rate parameter, sampled from param_limits["lam"].
Instance attribute.










	
dtype

	alias of builtins.int






	
hard_limits = {'lam': [0, 10]}

	




	
name = 'Poisson'

	




	
param_limits = {'lam': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the Poisson distribution
using the provided np.random.RandomState instance.












Module contents

Top-level imports for the edo.distributions subpackage.


	
class edo.distributions.Distribution

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An abstract base class for all currently implemented distributions and
those defined by users.


	
sample(nrows=None, random_state=None)

	A placeholder function for sampling from the distribution.










	
class edo.distributions.Bernoulli(random_state)

	Bases: edo.distributions.base.Distribution

The Bernoulli distribution class, i.e. a binomial distribution with
exactly one trial.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Bernoulli".



	dtypeint

	int([x]) -> integer



	param_limitsdict

	A dictionary of the limits on the distribution parameter. Defaults to
[0, 1] for prob.



	probfloat

	The success probability, sampled from param_limits["prob"].
Instance attribute.










	
dtype

	alias of builtins.int






	
hard_limits = {'prob': [0, 1]}

	




	
name = 'Bernoulli'

	




	
param_limits = {'prob': [0, 1]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the Bernoulli distribution
using the provided np.random.RandomState instance.










	
class edo.distributions.Gamma(random_state)

	Bases: edo.distributions.base.Distribution

The gamma distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Gamma".



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[0, 10] for both alpha and theta.



	alphafloat

	The shape parameter sampled from param_limits["alpha"].
Instance attribute.



	thetafloat

	The scale parameter sampled from param_limits["theta"].
Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'alpha': [0, 10], 'theta': [0, 10]}

	




	
name = 'Gamma'

	




	
param_limits = {'alpha': [0, 10], 'theta': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the gamma distribution using
the provided np.random.RandomState instance.










	
class edo.distributions.Normal(random_state)

	Bases: edo.distributions.base.Distribution

The normal distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, "Normal".



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[-10, 10] for mean and [0, 10] for std.



	meanfloat”

	The mean, sampled from param_limits["mean"]. Instance attribute.



	stdfloat

	The standard deviation, sampled from param_limits["std"].
Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'mean': [-10, 10], 'std': [0, 10]}

	




	
name = 'Normal'

	




	
param_limits = {'mean': [-10, 10], 'std': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the normal distribution using
the provided np.random.RandomState instance.










	
class edo.distributions.Poisson(random_state)

	Bases: edo.distributions.base.Distribution

The Poisson distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of distribution, "Poisson".



	dtypeint

	int([x]) -> integer



	param_limitsdict

	A dictionary of the limits of the distribution parameter. Defaults to
[0, 10] for lam.



	lamfloat

	The rate parameter, sampled from param_limits["lam"].
Instance attribute.










	
dtype

	alias of builtins.int






	
hard_limits = {'lam': [0, 10]}

	




	
name = 'Poisson'

	




	
param_limits = {'lam': [0, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the Poisson distribution
using the provided np.random.RandomState instance.










	
class edo.distributions.Uniform(random_state)

	Bases: edo.distributions.base.Distribution

The uniform distribution class.


	Parameters

	
	random_statenumpy.random.RandomState

	The PRNG used to sample instance parameters from param_limits.







	Attributes

	
	namestr

	Name of the distribution, Uniform.



	dtypefloat

	Convert a string or number to a floating point number, if possible.



	param_limitsdict

	A dictionary of limits on the distribution parameters. Defaults to
[-10, 10] for bounds.



	boundslist of float

	The lower and upper bounds of the distribution. Instance attribute.










	
dtype

	alias of builtins.float






	
hard_limits = {'bounds': [-10, 10]}

	




	
name = 'Uniform'

	




	
param_limits = {'bounds': [-10, 10]}

	




	
sample(nrows, random_state)

	Take a sample of size nrows from the uniform distribution using
the provided np.random.RandomState instance.















          

      

      

    

  

    
      
          
            
  


edo.operators package


Submodules




edo.operators.crossover module

Functions for the crossover process.


	
edo.operators.crossover.crossover(parent1, parent2, col_limits, families, random_state, prob=0.5)

	Blend the information from two parents to create a new Individual.
Dimensions are inherited first, forming a “skeleton” that is filled with
column-metadata pairs. These pairs are selected from either parent
uniformly. Missing values are filled in as necessary.


	Parameters

	
	parent1Individual

	The first individual to be blended.



	parent2Individual

	The second individual to be blended.



	col_limitslist

	Lower and upper bounds on the number of columns offspring can
have. Used in case of tuple limits.



	familieslist

	Families of distributions with which to create new columns. Used in case
of tuple column limits.



	random_statenumpy.random.RandomState

	The PRNG associated with the offspring.



	probfloat, optional

	The cut-off probability with which to inherit dimensions from
parent1 over parent2.



	Returns

	

	——-

	

	offspringIndividual

	A new individual formed from the dimensions and columns of its parents.
















edo.operators.mutation module

Functions related to the mutation operator.


	
edo.operators.mutation.mutate_ncols(dataframe, metadata, col_limits, families, weights, random_state, prob)

	Mutate the number of columns an individual has by adding a new column
and/or dropping a column at random. In either case, the bounds defined in
col_limits cannot be exceeded.






	
edo.operators.mutation.mutate_nrows(dataframe, metadata, row_limits, random_state, prob)

	Mutate the number of rows an individual has by adding a new row and/or
dropping a row at random so as not to exceed the bounds of
row_limits.






	
edo.operators.mutation.mutate_values(dataframe, metadata, random_state, prob)

	Iterate over the values of dataframe and mutate them each with
probability prob. Mutating a value is done by resampling from the
associated column distribution in metadata.






	
edo.operators.mutation.mutation(individual, prob, row_limits, col_limits, families, weights=None)

	Mutate an individual. Here, the characteristics of an individual can be
split into two parts: their dimensions, and their values. Each of these
parts is mutated in a different way using the same probability,
prob.


	Parameters

	
	individualIndividual

	The individual to be mutated.



	probfloat

	The probability with which any characteristic of individual should
be mutated.



	row_limitslist

	Lower and upper limits on the number of rows an individual can have.



	col_limitslist

	Lower and upper limits on the number of columns an individual can have.



	families: list

	Families of distributions with which to create new columns.



	weightslist, optional

	Probabilities with which to sample a distribution families. If
None, sample uniformly.







	Returns

	
	mutantIndividual

	A (potentially) mutated individual.
















edo.operators.selection module

The selection operator.


	
edo.operators.selection.selection(population, pop_fitness, best_prop, lucky_prop, random_state, maximise=False)

	Given a population, select a proportion of the “best” individuals and
another of the “lucky” individuals (if they are available) to form a set of
potential parents.


	Parameters

	
	populationlist

	All current individuals.



	pop_fitnesslist

	The fitness of each individual in population.



	best_propfloat

	The proportion of the fittest individuals in population to be
selected.



	lucky_propfloat

	The proportion of lucky individuals left in population to be
selected after the “best” have been selected.



	maximisebool, optional

	Determines whether an individual’s fitness should be maximal or not.
Defaults to False.







	Returns

	
	parentsdict

	The individuals chosen to potentially become parents and their index in
the current population.
















edo.operators.shrink module

Functions for shrinking the search space.


	
edo.operators.shrink.shrink(parents, families, itr, shrinkage)

	Given the current progress of the evolutionary algorithm, shrink its
search space, i.e. the parameter spaces for each of the distribution classes
in families.


	Parameters

	
	parentslist of Individual instances

	The parent individuals for this iteration.



	familieslist of Distribution instances

	The families of distributions to be shrunk.



	itrint

	The current iteration.



	shrinkagefloat

	The shrinkage factor between 0 and 1.







	Returns

	
	familieslist of Distribution instances

	The altered families.
















edo.operators.util module

A collection of functions for use across several operators.


	
edo.operators.util.get_family_counts(metadata, families)

	Get the number of instances in metadata that belong to each family in
families.








Module contents


	
edo.operators.crossover(parent1, parent2, col_limits, families, random_state, prob=0.5)

	Blend the information from two parents to create a new Individual.
Dimensions are inherited first, forming a “skeleton” that is filled with
column-metadata pairs. These pairs are selected from either parent
uniformly. Missing values are filled in as necessary.


	Parameters

	
	parent1Individual

	The first individual to be blended.



	parent2Individual

	The second individual to be blended.



	col_limitslist

	Lower and upper bounds on the number of columns offspring can
have. Used in case of tuple limits.



	familieslist

	Families of distributions with which to create new columns. Used in case
of tuple column limits.



	random_statenumpy.random.RandomState

	The PRNG associated with the offspring.



	probfloat, optional

	The cut-off probability with which to inherit dimensions from
parent1 over parent2.



	Returns

	

	——-

	

	offspringIndividual

	A new individual formed from the dimensions and columns of its parents.














	
edo.operators.mutation(individual, prob, row_limits, col_limits, families, weights=None)

	Mutate an individual. Here, the characteristics of an individual can be
split into two parts: their dimensions, and their values. Each of these
parts is mutated in a different way using the same probability,
prob.


	Parameters

	
	individualIndividual

	The individual to be mutated.



	probfloat

	The probability with which any characteristic of individual should
be mutated.



	row_limitslist

	Lower and upper limits on the number of rows an individual can have.



	col_limitslist

	Lower and upper limits on the number of columns an individual can have.



	families: list

	Families of distributions with which to create new columns.



	weightslist, optional

	Probabilities with which to sample a distribution families. If
None, sample uniformly.







	Returns

	
	mutantIndividual

	A (potentially) mutated individual.














	
edo.operators.selection(population, pop_fitness, best_prop, lucky_prop, random_state, maximise=False)

	Given a population, select a proportion of the “best” individuals and
another of the “lucky” individuals (if they are available) to form a set of
potential parents.


	Parameters

	
	populationlist

	All current individuals.



	pop_fitnesslist

	The fitness of each individual in population.



	best_propfloat

	The proportion of the fittest individuals in population to be
selected.



	lucky_propfloat

	The proportion of lucky individuals left in population to be
selected after the “best” have been selected.



	maximisebool, optional

	Determines whether an individual’s fitness should be maximal or not.
Defaults to False.







	Returns

	
	parentsdict

	The individuals chosen to potentially become parents and their index in
the current population.














	
edo.operators.shrink(parents, families, itr, shrinkage)

	Given the current progress of the evolutionary algorithm, shrink its
search space, i.e. the parameter spaces for each of the distribution classes
in families.


	Parameters

	
	parentslist of Individual instances

	The parent individuals for this iteration.



	familieslist of Distribution instances

	The families of distributions to be shrunk.



	itrint

	The current iteration.



	shrinkagefloat

	The shrinkage factor between 0 and 1.







	Returns

	
	familieslist of Distribution instances

	The altered families.
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Citation instructions


Citing the library

Please use the following to cite the library:

@misc{edo-library,
    author = {{The EDO library developers}},
    title = {edo: <RELEASE TITLE>},
    year = <RELEASE YEAR>,
    doi = {<DOI INFORMATION>},
    url = {http://doi.org/<DOI INFORMATION>}
}





To check the relevant details (i.e. RELEASE TITLE, RELEASE YEAR and
DOI NUMBER) head to the library’s Zenodo page:

[image: ../_images/139703799.svg]
 [https://zenodo.org/badge/latestdoi/139703799]


Citing the paper

If you wish to cite the paper, then use the following:

@article{edo-paper,
    title = {Evolutionary dataset optimisation: learning algorithm quality
             through evolution},
    author = {Wilde, Henry and Knight, Vincent and Gillard, Jonathan},
    journal = {Applied Intelligence},
    year = 2020,
    volume = 50,
    pages = {1172--1191},
    doi = {10.1007/s10489-019-01592-4},
}











          

      

      

    

  

    
      
          
            
  


Contributing to the library

Contributions are always welcome whether they come in the form of providing a
fix for a current issue [https://github.com/daffidwilde/edo/issues],
reporting a bug or implementing an enhancement to the library code itself. Pull
requests (PRs) will be reviewed and collaboration is encouraged.

To make a contribution via a PR, follow these steps:


	Make a fork of the GitHub repo [https://github.com/daffidwilde/edo] and
clone your fork locally:

$ git clone https://github.com/<your-username>/edo.git







	Install the library in development mode. If you use Anaconda, there is a
conda environment file (environment.yml) with all of the development
dependencies:

$ cd edo
$ conda env create -f environment.yml
$ conda activate edo-dev
$ python setup.py develop







	Make your changes and write tests to go with them. Ensure that they pass and
you have 100% coverage:

$ python -m pytest --cov=edo --cov-fail-under=100 tests







	Push to your fork and open a pull request.
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